
Reducing Accuracy Gap in Adversarial Training by Discriminating Adversarial
Samples

Abstract
Adversarial training is a time-tested effective defense method
for norm-bounded adversarial attacks. However, it is known
that adversarial training usually causes non-trivial accuracy
degradation, leading to a large gap between robust accuracy
and natural accuracy. This can be largely attributed to ad-
versarial samples having a different distribution from natural
samples. Therefore directly training with adversarial samples
causes undesirable side-effects. We propose a novel method to
mitigate such distribution disparity. We devise an unsupervised
surrogate game to train a discriminator that classifies adversar-
ial samples to in-distribution or out-of-distribution. The latter
is precluded during inference. We compare our method with
four state-of-the-art adversarial training methods and two dis-
criminators under three threat models. Our method can bring
robust accuracy for adversarially trained models closer to the
natural accuracy whereas others suffer substantial degradation.

Introduction
Adversarial training is one of the most effective methods to
counter adversarial attacks on deep learning models (Mądry
et al. 2018). It leverages various attack methods to generate
adversarial samples and adds such samples to the training set
to improve model robustness. The state-of-the-art adversarial
training techniques can greatly improve model robustness. It
has prominent advantages over other methods such as ran-
dom smoothing (Jia et al. 2020) which has substantial runtime
overhead, model verification (Katz et al. 2017) which can ver-
ify a relatively smaller bound and often has scalability issues,
and runtime adversarial detection (Feinman et al. 2017) that
is vulnerable to white-box attack. Therefore, it is becoming a
standard step in model training.

However, existing adversarial training techniques often
induce non-trivial accuracy gap between clean and adver-
sarial samples. The root cause is that adversarial samples
follow a distribution that is different from the clean sample
distribution, which is also called natural distribution. As
such, directly using adversarial samples during inference un-
dermines the model’s ability to predict natural distribution.
Meanwhile, using such samples in training compromises the
model’s ability to learn the natural distribution, despite of
the ability of improving robustness. These are called the dis-
tribution disparity problem (Xie and Yuille 2020). Figure
(1a) and (1b) illustrate the problem. Figure (1a) shows the
case of a naturally trained model. The solid blue circle in
the center denotes a natural test sample of some label `. The
dashed contour lines delineate the natural distribution density.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The darker blue/red color indicates a higher/lower density of
`. Samples in a low density area are out-of-distribution and
most of the malicious adversarial samples are in this area. The
green area depicts the classification boundary of the model
and the irregular shape indicates its lack of robustness. The
crosses represent the adversarial samples being classified to
other labels than ` by the model. The square box denotes the
lp ball of the central sample. Figure (1b) shows the case of an
adversarially trained model. The adversarial training works
by including adversarial samples (crosses) in the training.
Observe that the robustness is improved as the green area is
enlarged compared to Figure (1a). However, there still exist
a significant number of out-of-distribution samples misclassi-
fied by the model, due to the hardness of this task. Moreover,
observe that the decision boundary shifts away from blue
area (dense area), which leads to the degradation of the clean
accuracy. This is because most of the adversarial samples are
concentrated on the low-density area, unlike natural samples.

(a) Normal
Classifier

(b) Adv. Trained
Classifier

(c) Adversarial
Detector

Figure 1: Distribution disparity problem in adversarial train-
ing and adversarial sample detection

A straightforward idea is using a discriminator to deter-
mine if an adversarial sample falls in the natural distribution.
Out-of-distribution samples are precluded from training and
inference. Runtime adversarial sample detection techniques
can be considered an approximation of discriminator (Fein-
man et al. 2017; Ma et al. 2019). These techniques often
model the natural distribution in the input space or feature
space. For example, kernel density estimation (KDE) (Fein-
man et al. 2017) approximates the density of internal activa-
tions with kernel functions and uses the density information
to identify adversarial samples. These methods can be used
to filter out unnatural samples so that they are not used in
adversarial training and/or inference. However, these discrim-
inators/detectors are closely coupled with the subject model,
making the training of a high quality discriminator very chal-
lenging. First, the irregular/complex classification boundary
of the subject model makes the acquisition of good classi-
fication boundary between natural and adversarial samples
difficult. Second, adversarial training of the discriminator/de-
tector is often less effective and hence the resulted discrim-

inator/detector is often vulnerable to adaptive attack (Yin,
Kolouri, and Rohde 2019). The reason again is the close
coupling with the subject model that may not have a good
classification boundary to begin with. Intuitively, the discrimi-
nator is not able to distinguish natural and unnatural samples
in general, but rather samples that are in the distribution de-
noted by the model and the rest. Figure (1c) illustrates the
concept. The solid blue line denotes the decision boundary of
the discriminator/detector. It depends on the subject model’s
decision boundary. The irregularity of the model’s bound-
ary makes it difficult to achieve a good boundary for the
discriminator. Furthermore, using the boundary to preclude
adversarial samples in training or testing leads to misclassifi-
cation due to its misalignment with the natural distribution
(i.e., dashed blue contour lines). In Figure (1c), the grey
crosses in the dense area are undesirably precluded. Please
see our results in Section Comparison with Discriminators.

To address the distribution disparity problem, we argue
that adversarial samples ought to be representative and in-
distribution. The first goal is to ensure that these samples
can effectively change the decision boundary such that the
model becomes more robust. As such, a simple idea of pre-
cluding out of distribution adversarial samples may not work
as that may filter out representative adversarial samples. The
second goal is to ensure that the adversarial samples do not
substantially compromise the model’s ability of learning the
natural distribution. However, finding representative and in-
distribution adversarial samples is hard. In addition, training
a general discriminator is highly challenging. Note that dis-
criminators in pre-trained GANs cannot serve the purpose
because (1) they themselves are vulnerable to adversarial
perturbations and (2) they are closely coupled with the corre-
sponding generators in the pre-trained GANs and hence not
general purpose.

In this paper, through rigorous problem reduction, we de-
couple the training into two parts: one is the standard ad-
versarial training that considers only the representativeness
goal and the other is a general-purpose and model agnos-
tic discriminator that is trained by a sophisticated surrogate
game. At the inference time, the discriminator is used to filter
out unnatural samples. The remaining natural samples are
then fed to the adversarial trained model to derive the final
classification results. Our evaluation shows that the method
substantially reduces the accuracy gap, compared to the state-
of-the-art adversarial training methods.

In summary, our main contributions include:

• We reduce the hard problem of adversarial training on
dense area into two independent parts: adversarial train-
ing and a surrogate game. We theoretically prove the
decomposed problem upper-bounds the original one.

• We propose a novel δ-Hardness-Adjustable Surrogate
Game for effective optimization.

• We build a prototype in TensorFlow. Our evaluation on
two datasets and four state-of-the-art adversarial train-
ing methods and two discriminators under oblivious/un-
seen/adaptive attacks shows our method is effective and
achieves the robust accuracy closer to the natural accu-
racy.

Related Work
Adversarial Training. A lot of standard adversarial train-
ing methods have been devised based on different attacks:
L-BFGS (Szegedy et al. 2014), FGSM (Goodfellow, Shlens,
and Szegedy 2015), one-step methods (Kurakin, Goodfellow,
and Bengio 2017), PGD (Mądry et al. 2018; Shafahi et al.
2019; Kannan, Kurakin, and Goodfellow 2018; Xie et al.
2020; Zhang et al. 2020b). Regularization (Zhang et al. 2019;
Wang et al. 2019) and early stop (Rice, Wong, and Kolter
2020) have been proposed to improve adversarial training.
TRADES (Zhang et al. 2019) utilized Kullback-Leibler regu-
larization to bound the adversarial risk and use an coefficient
to control the trade-off between natural accuracy and robust
accuracy. Rice et al. (Rice, Wong, and Kolter 2020) proposed
early-stop adversarial training to address the robust overfit-
ting. Tramèr et al. (Tramèr et al. 2017) introduced ensemble
adversarial training to improve robustness against black-box
attacks. Unsupervised adversarial training (UAT) (Alayrac
et al. 2019) and robust self-training (RST) (Carmon et al.
2019) use additional unlabeled samples to improve robust-
ness. While existing methods treat all adversarial samples
as the same, our method only utilizes adversarial samples
within the high-density area to address the distribution dispar-
ity issue. Most of the existing adversarial training methods
can be employed to solve the standard adversarial training
part in our relaxed problem.

Related Detection Methods. Kernel density estimation
(KDE) (Feinman et al. 2017) models the outputs of the fi-
nal hidden layer with a Gaussian Mixture Model. An input
is considered adversarial sample if its estimated likelihood
is smaller than a threshold. However, KDE is unable to de-
fend adaptive attacks (Carlini and Wagner 2017a). Pang et
al. (Pang et al. 2018) proposed the reverse cross-entropy
(RCE) loss to facilitate KDE detection. These density based
methods are usually easy to breach with adaptive attacks,
since their metric is manually designed. Generative adver-
sarial training (GAT) (Yin, Kolouri, and Rohde 2019) adver-
sarially trains N binary discriminators {fk}Nk=1 for N -class
classifier g to detect adversarial input. If g predicts an input
x as label k, fk is then selected for detection. And if fk(x)
is smaller than a selected threshold, x is considered as ad-
versarial sample. As mentioned previously, GAT will draw a
decision boundary closely coupled with the classifier, and this
coupling is problematic for good performance. Instead, our
method in theory estimates the density through a surrogate
game, which is independent from the underlying classifier.

Verification/Certification-based Defenses. There are other
defense mechanism parallel to adversarial training. AI2 (Gehr
et al. 2018) applies abstract interpretation to prove over-
approximated properties of convolutional networks. Wong
and Kolter (Wong and Kolter 2018) used linear relax-
ation. Some work (Cohen, Rosenfeld, and Kolter 2019;
Lecuyer et al. 2019) added random noises to classifiers.
COLT (Balunovic and Vechev 2019) combines adversarial
training and provable defenses. Zhang et al. (Zhang et al.
2020a) utilized linear programming and interval bound propa-
gation. Different from verified/certified defenses, our method
falls into the empirical defense category.

Design
Our overarching goal is to use representative and in-
distribution adversarial samples in training. The former re-
quirement is to ensure that the adversarial samples are ef-
fective in improving robustness. The latter requires that the
adversarial samples are natural and hence avoids accuracy
degradation. As such, a simple method that first generates
adversarial samples and then precludes those that are not
in natural distribution is not effective in practice because
many representative adversarial samples are filtered out due
to the lack of a good general purpose discriminator for natu-
ral samples (see results in Section Experiment). On the other
hand, existing adversarial training methods ensure represen-
tativeness but neglect the in-distribution requirement. As a
result, they suffer non-trivial accuracy degradation. In this
section, we show how we gradually (and rigorously) reduce
the objective to a realizable process that consists of a stan-
dard adversarial training step and a stand-alone discriminator
training step. The discriminator is used at the inference time
to screen out unnatural (adversarial) samples to prevent ac-
curacy degradation. It is trained by a surrogate game that
increases difficulty over time to achieve the best discrimina-
tion capabilities. In the following, we first define the notations
used in our description. Then we discuss the detailed problem
reduction and the final design.
Notations. We use a capital symbol (e.g. X) to denote a
random variable and a calligraphic font (e.g. X) for the cor-
responding distribution. We denote a data sample as X ∈ Rd
with a label Y ∈ N. They jointly follow distribution (X ,Y).
Our technique aims to harden a classifier g(·; θ) from domain
Rd to classes N. Our technique leverages a discriminator de-
noted as f(·;σ) from Rd to real interval [0, 1]. θ and σ are
parameters. We represent the loss functions for f and g as
Lf and Lg, respectively. B(x, ε) represents a closed set of
feasible adversarial samples which is defined through some
norm (i.e., `∞-norm in our experiment) and budget ε. Given
a distribution A and a set S, A|S represents A truncated on
S. 1(·) represents a characteristic function; ◦ represents the
Hadamard product between vectors. U(·) denotes a uniform
distribution over a range. �

Adversarial Training with a Discriminator
With the aforementioned notations, the standard adversarial
training can be described by a minmax formula as follows.

min
θ

E(X,Y)∼(X ,Y)

[
max

x′∈B(X,ε)
Lg(g(x′; θ), Y)

]
. (1)

To support our later formal discussion, we consider that an
adversarial sample Aθ, dependent on (X,Y), is drawn from a
distributionAθ. We use U to randomly select among multiple
maximal values. The conditional definition is as follows,

A
(X,Y)
θ ∼ Aθ,

Aθ|(X,Y) ∼ U

[
argmax
x′∈B(X,ε)

Lg(g(x′; θ), Y)

]
.

(2)

Assuming the argmax function of X and Y is measurable,
the loss function Eq. (1) can hence be rewritten as follows.

min
θ

E(Aθ,Y)∼(Aθ,Y)Lg(g(Aθ; θ), Y) . (3)

Real

Fake

Input

Add
Noise

Attack

Adv Sample

Discriminator Output

①

② ③
Discriminator

Input

Discard
Fake

Real

Classifier

Predict

(a) Training Phase

Real

Fake

Input

Add
Noise

Attack

Adv Sample

Discriminator Output

①

② ③
Discriminator

Input

Discard
Fake

Real

Classifier

Predict

(b) Inference Phase
Figure 2: Illustration of δ-hardness-adjustable game. This
game stresses a balance between hardness and effective opti-
mization (Eq. 8). (a) During training, in step 1©, we randomly
sample some positions for masking (colorful dots) and add
the uniform noise on the masked area. The amount of mask-
ing area is controlled by δ, a.k.a the hardness of the game. In
step 2©, the attacker generates malicious samples by modify-
ing the unmasked area. In step 3©, the discriminator learns
to tell the difference between the adversarial samples and be-
nign samples. (b) During inference, the system simply rejects
low-density samples and only predicts for high-density ones.

As mentioned earlier, distribution Aθ and X can be very
different, making it difficult to achieve both robust accuracy
and natural accuracy. A plausible solution is to harden the
model with only adversarial samples in the distribution of
natural samples and preclude the out-of-distribution ones.
As such, we might retain good accuracy but fail to gain ro-
bustness as many adversarial samples are precluded. On the
other hand, if we allow arbitrary adversarial samples, these
samples may be so out of the natural distribution that the
natural accuracy degrades substantially, in spite of the better
robustness. Our idea is to acquire adversarial samples in a
common high-density areas of both the natural and the adver-
sarial distributions and use such samples in training. We also
regulate the differences between the two distributions to make
sure they are not far off. Specifically, given the density func-
tions of X andAθ, denoted as ρX(·) and ρAθ (·) respectively,
we define the high density area as Sθ = { ρX(x)

ρAθ (x)
≥ c} where

c is a constant to control the balance. For example, c = 1
means we only train with the adversarial samples when they
are as likely in the adversarial distribution as in the natural
distribution. By avoiding the low-density adversarial samples,

we can redefine the goal as Eq. (4).

min
θ
µ(Sθ)E(Aθ,Y)∼(Aθ|Sθ,Y)Lg(g(Aθ; θ), Y)

+ 2DJS(Aθ,X)
(4)

The Jensen–Shannon divergence DJS is a penalty term
to make sure the adversarial distribution Aθ is close to X .
Intuitively, by this term we want to draw adversarial samples
from a distribution that is sufficiently natural, just like how
humans harden their decision makings with realistic samples.
Since Aθ may have a disjoint support with Sθ which makes
the expectation ill-defined, we scale the first term with µ(Sθ)
to rule out this case, where µ is the measure of Aθ.

The term Sθ requires the knowledge of ρX(·) and ρAθ (·),
which is not practically attainable. Hence, we leverage a
discriminator f to take its place. In particular, f(x;σ) can be
considered as the probability of a sample from Aθ. Inversely,
1−f(x;σ) represents the probability of that from X . We use
Tσ = {x|f(x;σ) ≤ α} to approximate Sθ. We can rewrite
the goal using the discriminator f as follows,

min
θ,σ

Classification Loss︷ ︸︸ ︷
µ(Tσ)E(Aθ,Y)∼(Aθ|Tσ,Y)Lg(g(Aθ; θ), Y)+

Discrimination Loss︷ ︸︸ ︷
EAθLf (f(Aθ;σ), 1) + EXLf (f(X;σ), 0) .

(5)

Here Lf is a cross-entropy loss function. In the following,
we prove that using the discriminator f provides a good
approximation of the goal in Eq. (4).
Lemma 1. Given the cross-entropy loss Lf (x, 0) =
− log(1 − x), Lf (x, 1) = − log(x), and assuming Tσ =
Sθ, we have Eq.(4) ≤ Eq.(5), and this upper bound is tight
when

f(·;σ) = ρAθ (·)
ρX (·) + ρAθ (·)

, and c =
1− α
α

.

Note that c is the constant used to define Sθ and α is the
threshold in the definition of Tσ . The proof of the lemma is in
Appendix A. Lemma 1 and Eq. (5) provide a way to measure
the density ratio without explicitly expressing the distribu-
tions. However, the two terms in Eq. (5) are interdependent.
Tσ in the classification loss depends on the discriminator and
Aθ in the discrimination loss depends on the classifier. This
interdependence is problematic for practical optimization.
Specifically, the dependency causes competition and oscil-
lation during adversarial training, and makes convergence
difficult if not impossible. To this end, we further relax the
problem and decouple the loss into two independent parts.
Theorem 1. Eq. (5) is upper-bounded by two independent
terms,

Eq.(5) ≤

Surrogate Game︷ ︸︸ ︷
min
σ

EAσLf (f(Aσ;σ), 1) + EXLf (f(X;σ), 0)+

Standard Adv Training︷ ︸︸ ︷
min
θ

E(Aθ,Y)Lg(g(Aθ; θ), Y) (6)

where adversarial sample Aσ (dependent on X) is drawn
from distribution Aσ , as defined in the following.

A(X)
σ ∼ Aσ, Aσ|X ∼ U

[
argmax
x′∈B(X,ε)

Lf (f(x′;σ), 1)

]
(7)

Its proof is in Appendix A. Intuitively, compared to Eq. (5),
the first term is relaxed by removing the truncation of Aσ
on Tσ, which makes it the same loss term as in standard
adversarial training. In the second term, according to Eq. (7),
the adversarial sample Aσ is to cause the discriminator to
misclassify, whereas Aθ in Eq. (5) is to cause the subject
model to misclassify. Since the discriminator f is derived
from natural and adversarial samples, the second loss term
suggests that we can devise a surrogate game to train f as
part of the process. More importantly, the two terms are in-
dependent such that the hardening process can be decoupled
to a standard adversarial training and the surrogate game. At
inference time, the (trained) discriminator is first used to filter
out the unnatural samples and the hardened model is then
used to produce the classification results.
δ-Hardness-Adjustable Surrogate Game. Practically, the
surrogate game mentioned above is hard for the discrimi-
nator. Intuitively, the adversary can introduce arbitrary per-
turbations, e.g., simply making A(X)

σ = X , such that the
discriminator has substantial difficulties learning how to dis-
tinguish adversarial and natural samples. Thus we propose
an innovative δ-hardness-adjustable Surrogate Game (δ-SG)
which strikes a balance in the hardship and effectiveness of
training. The basic idea is to use an argument δ to control the
level of hardship. Specifically, allowing the adversary to mu-
tate a given sample in an arbitrary fashion (in order to defeat
the discriminator) represents the hardest extreme, whereas
disallowing the adversary to mutate at all represents the eas-
iest extreme. The argument δ ∈ [0, 1] denotes some middle
point in between the two extremes. Formally, we construct
adversarial samples Hσ,δ as follows.

Let h(m,x1, x2) = m ◦ x1 + (1−m) ◦ x2, X ∼ X ,
N ∼ U(B(X, ε)), R ∼ U([0, 1]d),m(R) = 1[R < δ],

H
(X,N,R)
σ,δ ∼ Hσ,δ, Hσ,δ|(X,N,R) ∼

U

[
argmax

h(m(R),N,x′)|x′∈B(X,ε)

Lf (f(h(m(R), N, x′);σ), 1)

]
(8)

Function h uses a binary vector mask m to combine two
samples into one. For each dimension, it either takes the
value from the corresponding dimension in x1, or that from
x2. We use it to restrict the dimensions that can be perturbed
for an adversarial sample. The maskm is randomly generated
and controlled by the hardness parameter δ and a uniform
random seedR. For the dimensions that are not mutable, their
values are filled in from a noise vector N , which is a random
sample from U(B(x, ε)). The δ-SG game is then formally
defined as follows.

G(δ) = min
σ

EH∼Hσ,δLf (f(H;σ), 1)+

EX∼XLf (f(X;σ), 0) .
(9)

Here, we use G(δ) to denote the minimum value that can
be achieved by the δ-SG game. Intuitively, a smaller G(δ)
value indicates a harder game. The following theme shows
that δ = 0 and δ = 1 denote the hardest and easiest games

Algorithm 1: Discriminator Training by Hardness-Adjustable
Surrogate Game
Input :Training Data (X ,Y), training epochs T , curriculum learn-

ing epochs Tc, number of batches each epoch L, surrogate
game hardness limit δ, adversary iteration I , set of adver-
sary learning rates E , set of feasible adversarial samples
B(·, ε).

Output :δ-SG robust discriminator σ

1 σ ← RandomInit(), δ̂ ← 1.0
2 for t← 1 to T do
3 for b← 1 to L do
4 xb ∼ X // Sample a batch of data
5 Sample a learning rate η ∼ E

// Ensemble of attackers

6 Sample seed R and noise N through δ̂
7 x′b ← h(m(R), N, xb) // see Eq.(8)
8 for i← 1 to I do
9 x′b ← x′b + η sign[∇σLf (f(x′b;σ), 1)]

// Adversarial optimization
10 x′b ← Clip(x′b, B(xb, ε))

// Clip within the boundary
11 x′b ← h(m(R), N, x′b)

// Keep the game rule
12 Update σ with ∇σ [Lf (f(x′b;σ), 1) + Lf (f(xb;σ), 0)]

if t ≤ Tc then
13 δ̂ ← δ̂−(1−δ)/(TcL) // Increase hardship

level till reaching δ

respectively, and the hardship monotonically decreases when
δ changes from 0 to 1.
Theorem 2. (1) When δ = 0, the δ-SG is equivalent to that
in the Surrogate Game in Eq. (6) and when δ = 1, the δ-SG
is equivalent to the following.

G(1) = min
σ

EU∼U(B(X,ε))Lf (f(U ;σ), 1)

+EX∼XLf (f(X;σ), 0) .
(10)

2) We have δ1 ≥ δ2 =⇒ G(δ1) ≤ G(δ2) assuming B is
defined on l∞-norm.

The proof is in Appendix A. The game of δ = 1 aims to
differentiate the input distribution and a uniformly perturbed
distribution. Intuitively, it’s to distinguish inputs with ran-
dom noises from clean inputs and hence much easier than
differentiating inputs with crafted perturbations (to fool the
discriminator) from the clean ones. The proof of (2) is to
show that a larger δ indicates a smaller domain of the min
function in Eq. (9), suggesting it’s easier to find the minimum.
Training Algorithm. The high-level steps of the discrimina-
tor training process are illustrated in Figure 2a. Algorithm 1
describes the detailed process. Note that besides the discrim-
inator, we also apply standard adversarial training to the
subject model, as indicated by the first term of Eq.(7). Since
δ-SG by its nature allows different levels of hardness, we
leverage curriculum learning where difficulty gradually in-
creases. To increase generalization, we also uses ensemble of
attackers by using different learning rates in during training.
Specifically, initially, the algorithm set the starting δ̂ to 1.0
(i.e., the easiest) at line 1. It will gradually decreases to δ,

the target hardness level. Line 5 samples a random learning
rate, denoting a random adversary. Line 6 samples a mask m
and N , the random perturbations of xb. The former is used to
combine N and xb to acquire x′b (i.e., Eq.(8)). In lines 9-11,
N stays the same whereas x′b is mutated through I steps of
adversarial attack. Line 12 updates the discriminator weight
values. Line 13 updates δ̂. Observe that during the first Tc
epochs, δ gradually decreases from 1. It reaches 0 and doesn’t
change after Tc epochs.

Inference with Discriminator
Figure 2b shows the inference phase of our defense. Given
well-trained f(·;σ),g(·; θ), and (X,Y) ∼ (X ,Y) as we de-
scribed earlier, we consider the following defense. The dis-
criminator judges whether the sample falls into the low den-
sity area. When the sample is from low density area, the sys-
tem simply discard it. In another word, we negligibly shrink
the domain of feasible input in exchange of better robustness.
In this manner, the model correctly classifies the sample iff.
g(X; θ) = Y ∧ f(X;σ) < α. Inversely an attacker succeeds
iff. g(X; θ) 6= Y ∧ f(X;σ) < α. Note that this setting is
somewhat similar to defense, with the difference that we
reject samples with a small probability (1%).

Experiment
Experimental Setup
Datasets and Models. Two datasets are used: CIFAR-
10 (Krizhevsky, Hinton et al. 2009) and Tiny ImageNet (Deng
et al. 2017). CIFAR10 includes 60000 images of size 32x32
for 10 classes. Tiny ImageNet includes 100000 images of
size 64x64 for 200 classes. We use the original classification
models as the baselines.
Threat Models. We consider three types of threat models. 1)
Oblivious attack: attackers have the access to the classifier
but know nothing about the new defense. 2) Unseen attack:
attackers use a generation mechanism which is quite differ-
ent from attack used in the adversarial training. 3) Adaptive
attack: attackers know everything of the system and the de-
fenses.We adopt the common setting of `∞-norm and set
ε = 8.0/255. We set the α in a way where the false-positive
ratio on training data equals 1%.
Baselines. We choose three popular adversarial training meth-
ods Mądry (Mądry et al. 2018), TRADE(Zhang et al. 2019),
UAT (Alayrac et al. 2019), as well as two detection methods
including KDE (Feinman et al. 2017) and GAT (Yin, Kolouri,
and Rohde 2019) as our baselines. The introduction to these
baselines can be found in Section Related Work.
Metrics. For each defense method, we report three metrics.
The accuracy (Acc.) means the accuracy for either the nor-
mal samples (without attacks) or adversarial ones (with dif-
ferent attacks) using the classifier alone. The low density
rate (LD Rate) means how many samples are in the low-
density area and thus rejected by the discriminator. We also
report the accuracy of adversarial samples in high-density
area (HD Acc.). This metric mimics the behavior of adaptive
attackers who simultaneously evade the discrimination and
mislead the classifier. It calculates the accuracy of the best
adversarial samples within the high-density area. Specifically,

Table 1: Compare accuracy with high density accuracy on CIFAR10.

Threat Attack
Mądry Trade UAT

Acc. HD Acc. LD Rate Acc. HD Acc. LD Rate Acc. HD Acc. LD Rate

None Nature 87.3 % 85.8 % 1.7 % 84.9 % 83.5 % 1.7 % 86.4 % 85.0 % 1.7 %

Oblivious

Auto 44.1 % 85.1 % 99.2 % 53.4 % 86.8 % 99.6 % 57.0 % 84.8 % 99.8 %
PGD 45.1 % 84.3 % 99.4 % 54.5 % 82.1 % 99.7 % 62.7 % 84.6 % 99.8 %
CW 46.0 % 85.4 % 99.7 % 53.5 % 82.3 % 99.7 % 62.4 % 84.7 % 99.9 %
BIM 44.9 % 83.6 % 99.5 % 54.7 % 81.7 % 99.5 % 62.5 % 84.4 % 99.9 %

MIFGSM 50.4 % 81.7 % 99.0 % 58.7 % 80.8 % 99.7 % 66.4 % 83.8 % 99.8 %
DeepFool 68.3 % 83.6 % 89.0 % 82.7 % 83.1 % 82.8 % 84.4 % 84.4 % 83.4 %

JSMA 84.0 % 85.3 % 94.5 % 82.4 % 82.3 % 94.8 % 85.3 % 84.7 % 96.2 %

Unseen Square 71.2 % 80.9 % 82.3 % 72.5 % 81.1 % 82.6 % 77.6 % 82.4 % 83.7 %

Adpative

g prior 82.0 % 80.6 % 81.6 % 81.3 % 80.2 % 81.8 % 84.4 % 83.0 % 86.9 %
f prior 47.1 % 77.6 % 79.7 % 54.0 % 76.4 % 78.3 % 62.6 % 79.0 % 81.1 %
Margin 82.8 % 81.2 % 82.7 % 81.5 % 80.6 % 82.7 % 84.4 % 83.3 % 87.7 %
Penalty 56.5 % 80.1 % 80.9 % 66.0 % 80.1 % 81.2 % 75.3 % 83.0 % 86.2 %

Worst Case 44.9 % 77.6 % - 53.5 % 76.4 % - 62.4 % 79.0 % -
Acc. Gap 42.4 % 8.2 % - 31.4 % 7.1 % - 24.0 % 6.0 % -

Table 2: Comparison of different discriminators.

Threat Attack
HD Acc. LD Rate

Ours KDE GAT Ours KDE GAT

None Nature 85.8 % 85.8 % 85.6 % 1.7 % 2.0 % 6.0 %

Oblivious

Auto 85.1 % 45.2 % 57.3 % 99.2 % 3.7 % 29.0 %
PGD 84.3 % 45.6 % 58.4 % 99.4 % 3.3 % 17.4 %
CW 85.4 % 47.6 % 65.5 % 99.7 % 4.7 % 24.8 %
BIM 83.6 % 45.7 % 57.8 % 99.5 % 3.5 % 16.8 %

MIFGSM 81.7 % 51.3 % 62.4 % 99.0 % 3.5 % 15.8 %
DeepFool 83.6 % 67.6 % 75.9 % 89.0 % 3.8 % 16.4 %

JSMA 85.3 % 82.8 % 84.0 % 94.5 % 2.3 % 9.1 %

Unseen Square 80.9 % 71.5 % 77.1 % 82.3 % 2.6 % 13.8 %

Adpative

g prior 80.6 % 46.2 % 51.0 % 81.6 % 0.8 % 2.8 %
f prior 77.6 % 46.1 % 50.3 % 79.7 % 1.4 % 3.0 %
Margin 81.2 % 48.1 % 51.2 % 82.7 % 5.0 % 3.3 %
Penalty 80.1 % 46.1 % 49.6 % 80.9 % 1.4 % 2.4 %

Worst Case 77.6 % 45.6 % 49.6 % - - -

each attacker iteratively generates adversarial samples for
sample (X,Y) in k steps. Among the adversarial samples
it generate at different steps {xi}ki=1 , we select one with
the largest loss value in the high-density area, defined as
argmaxx∈{xi}ki=1

Lg(g(x; θ), Y)1(f(x;σ) ≤ α). Note that
HD Acc. is a slightly different concept compared with Acc.,
for it negligibly shrinks the defense area of `p-ball. For more
details on the experimental setup, please refer to Appendix B.

Adversarial attacks
Oblivious Attack. We evaluate our method against the fol-
lowing representative attacks. 1) Auto (Croce and Hein 2020)
combines several latest attackers and uses an adaptive learn-
ing rate to attack. 2) PGD (Mądry et al. 2018) is claimed
as the most representative first-order attack. It uses ran-
dom start and clips the perturbation with a pre-defined `∞
bound. 3) CW (Mądry et al. 2018) denotes PGD with Carlini-
Wagner (CW) loss function (Carlini and Wagner 2017b). 4)
BIM (Kurakin, Goodfellow, and Bengio 2016) is an iterative
version of FGSM (Goodfellow, Shlens, and Szegedy 2015).
5) MIFGSM (Dong et al. 2018) extends BIM with momen-
tum. 6) DeepFool (Moosavi-Dezfooli, Fawzi, and Frossard
2016) is an iterative attack with a linear approximation. 7)
JSMA (Papernot et al. 2016) perturbs the most important
features denoted by the Jacobian-based saliency map.
Unseen Attack. To better evaluate our defense against po-
tential unseen attack(Athalye, Carlini, and Wagner 2018),
we include an attacker of different mechanism called square
attack (Andriushchenko et al. 2020). It generates adversarial
samples by iteratively covering images with shadow squares.
This is quite different from gradient-based attacks which we
adopts in the surrogate game training. Thus results on the
square attack demonstrate the generalization ability of our
surrogate game.
Adaptive Attack. In this threat model, the adversaries are
fully aware of the defense and thus can design adaptive at-
tacks to breach the model and the defense. To mislead both
the classifier and the discriminator, they need to incorporate

both models into the loss function. We consider four differ-
ent strategies. Let us denote the loss function of f and g by
Lf and Lg and the indicator function of successful attack
on f and g by 1f and 1g. 1g(x) = 1 if the classifier mis-
classifies x. 1f = 1 if x falls in the low-density area. We
practically use CW loss for Lf and Lg since it can avoid
potential numerical issues(Carlini and Wagner 2017b).

f -priority: Lf -prior(x) = 1g(x)Lf (x) + (1− 1g(x))Lg(x)
g-priority: Lg-prior(x) = 1f (x)Lg(x) + (1− 1f (x))Lf (x)
Penalty: LPenalty(x) = Lg(x) + λLf (x)

Intuitively, f -prior strategy minimizes Lf once the attacker
misleads the classifier g. It actually prioritizes the best ad-
versarial sample against f . Oppositely, g-prior strategy min-
imizes Lg once the attacker misleads the discriminator f ,
which prioritizes attacking g. Penalty strategy combines two
goals through a penalty weight λ. Margin strategy has the
same loss function with g-priority strategy except that it ex-
tends 1f to be a continuous function. In this way, it creates
a smooth transition margin between target f and target g. In
our experiments, we grid search the hyper-parameters (itera-
tions, step size and penalty weight) for the attacker (details
in Appendix D) and uses the best one to report the result.

Comparison with Adversarial Training Baselines
Table 1 shows the whole results of ours with the three ad-
versarial training baselines on CIFAR10. Further results on
Tiny ImageNet show our approach is also effective on larger
images. Please refer to Table 3 in Appendix F for details.
Elaboration of Metrics. Take the result of Mądry’s model
in Table 1 as an example. The first row denoted by “None”
Threat shows the results on natural samples. Its test accu-
racy on natural samples is 87.3% (Acc.). LD Rate is model-
agnostic. It means our approach filters out 1.7% natural sam-
ples. After rejecting the 1.7% natural samples, Mądry model’s
test accuracy is 85.8% (HD Acc.). We use another row PGD
to explain metrics in adversarial settings. Mądry’s model have
a 45.1% test accuracy on PDG attack. 99.4% PGD-generated

samples fall in the low-density area and thus can be distin-
guished by our approach. If we select the best PGD-generated
samples in high-density areas from the optimization iterations
and feed them to Mądry’s model, it has 84.3% test accuracy.
Accuracy Gap. From Table 1, we can find large accuracy
gaps between the normal accuracy and the robust accuracy on
adversarially trained models. Let us use Mądry’s model as a
example. This model has 44% robust accuracy and 87% nor-
mal accuracy, which leads to a 43% accuracy gap. Meanwhile,
more than 80% adversarial examples fall into the low-density
area, which are discriminated by our approach. By restricting
the adversarial samples into high-density area, these adversar-
ial samples are less malicious. HD Acc. reveals the accuracy
after using these dense adversarial samples. We can find 32%
robust accuracy improvement through this restriction. More
importantly, the accuracy gap is now vastly shrinked to 8%.
Adversarial Samples vs Out-of-distribution Samples.
One general question is that whether adversarial samples
are out-of-distribution samples. And we empirically find that
the majority of malicious adversarial samples fall into the
low-density area (relative to natural distribution). From ta-
ble 1, each attacker has different level of attack success rate
(ASR), which is defined as 100% − Acc. A higher ASR
indicates this attack generates more malicious adversarial
samples. And detection rate indicates whether the samples
are out-of-distribution. We can find that the detection rate are
roughly positively correlated with ASR 1. For example on
Madry’s model, DeepFool has 31.7% ASR compared with
Auto 55.9% ASR, and DeepFool has 89.0% detection rate
while Auto attack has 99.2% detection rate.
Unseen and Adaptive Attacks. We also evaluate on unseen
and adaptive attacks. The result shows that our discriminator
can generalize to unseen attack well. Although there is a
moderate drop (6%) on detection rate compared to DeepFool
(which has a similar Acc.), the HD Acc. remains high. Our
results on several adaptive attacks further support the robust-
ness of our model. We find the adaptive attacker is not able
to simultaneously reduce accuracy on classifier and detection
rate on the discriminator. This result suggests it is difficult to
optimize in-distribution malicious adversarial samples.

Comparison with Discriminators
In the experiments, we compare our discriminator with other
related detectors including density detection (Feinman et al.
2017), and generative trained detector(Yin, Kolouri, and Ro-
hde 2019). We align the thresholds for different detectors to
make the HD Acc. comparable for benign samples. Original
papers select a larger threshold for better LD Rate, which
instead significantly reduce the HD Accuracy. We conduct
the experiment on CIFAR10 and Mądry model. Note that
the other two discriminators require the knowledge of spe-
cific classifier for detection while ours don’t, which further
enlightens our results. As shown by Table 2, our approach
outperforms KDE and GAT by a large margin. On adver-
sarial examples, our approach has the highest HD accuracy
and LD Rate. We also report the performance of our stan-

1It doesn’t apply to adaptive attacks since the LD rate is adap-
tively manipulated during attack.

OOD

Original

Δ

Figure 3: Visualization of adversarial samples for discrimina-
tor

dalone discriminator on different δ-SG games and adversarial
attacks. Results of Area Under Curve (AUC) score during
training and Receiver Operating Characteristic (ROC) during
inference can be found in Appendix C.

Effect on Normal Models
Note that in Theorem 1, the underlying classifier in our deriva-
tion are required to be adversarially trained. However, we
interestingly find that our discriminator is also effective to
some extent on the naturally trained models. Please refer to
Appendix F for more details.

How the Discriminator Works
To understand how the discriminator works, we visualize
the typical out-of-the-distribution (OOD) sample recognized
by the discriminator in Figure 3. These samples exaggerate
the feature learned by the discriminator and help us uncover
how it works. To generate these samples, we maximize the
discrimination loss within the `p bound through sign gradient
optimizer. The first row represents OOD samples, the second
row represents benign sample and the third one indicates high-
lighted perturbance. We find these OOD samples generally
present artifacts or unnatural pattern, e.g. the checkerboard
pattern in the first column, or the sudden value change in the
third column). This suggests that these unnatural patterns are
the key features used to recognize the OOD samples.

Conclusion
In this paper, we identify Distribution Disparity as one im-
portant reason of the gap between nature accuracy and robust
accuracy. We starts from a improved adversarial training and
theoretically show that can be reduced to independent goals.
We propose a novel δ-Hardness-Adjustable Surrogate Game
to train the discriminator in a feasible way. Experimental
results show our defense is robust against different threat
model and greatly narrow down the gap.
Limitations. Our defense and proof only considers `∞ norm.
As a trade-off for our mathematical reduction, we only con-
sider the problem of reducing of the accuracy gap in this
paper. It’s among our future work to study the effect on other
norms and improving accuracy degradation on the clean data.

References
Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.;
Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.;
Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Isard,
M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.; Levenberg,
J.; Mané, D.; Monga, R.; Moore, S.; Murray, D.; Olah, C.;
Schuster, M.; Shlens, J.; Steiner, B.; Sutskever, I.; Talwar,
K.; Tucker, P.; Vanhoucke, V.; Vasudevan, V.; Viégas, F.;
Vinyals, O.; Warden, P.; Wattenberg, M.; Wicke, M.; Yu,
Y.; and Zheng, X. 2015. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. Software available
from tensorflow.org.
Alayrac, J.-B.; Uesato, J.; Huang, P.-S.; Fawzi, A.; Stanforth,
R.; and Kohli, P. 2019. Are Labels Required for Improving
Adversarial Robustness? In Wallach, H.; Larochelle, H.;
Beygelzimer, A.; d'Alché-Buc, F.; Fox, E.; and Garnett, R.,
eds., Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.
Andriushchenko, M.; Croce, F.; Flammarion, N.; and Hein,
M. 2020. Square attack: a query-efficient black-box adver-
sarial attack via random search. In European Conference on
Computer Vision, 484–501. Springer.
Athalye, A.; Carlini, N.; and Wagner, D. 2018. Obfuscated
gradients give a false sense of security: Circumventing de-
fenses to adversarial examples. In International Conference
on Machine Learning, 274–283. PMLR.
Balunovic, M.; and Vechev, M. 2019. Adversarial training
and provable defenses: Bridging the gap. In International
Conference on Learning Representations.
Carlini, N.; and Wagner, D. 2017a. Adversarial Examples
Are Not Easily Detected: Bypassing Ten Detection Meth-
ods. In Proceedings of the 10th ACM Workshop on Artifi-
cial Intelligence and Security, AISec ’17, 3–14. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450352024.
Carlini, N.; and Wagner, D. 2017b. Towards Evaluating the
Robustness of Neural Networks. In IEEE Symposium on
Security and Privacy (S&P), 39–57.
Carmon, Y.; Raghunathan, A.; Schmidt, L.; Duchi, J. C.; and
Liang, P. S. 2019. Unlabeled Data Improves Adversarial
Robustness. In Wallach, H.; Larochelle, H.; Beygelzimer, A.;
d'Alché-Buc, F.; Fox, E.; and Garnett, R., eds., Advances in
Neural Information Processing Systems, volume 32. Curran
Associates, Inc.
Cohen, J.; Rosenfeld, E.; and Kolter, Z. 2019. Certified adver-
sarial robustness via randomized smoothing. In International
Conference on Machine Learning, 1310–1320. PMLR.
Croce, F.; and Hein, M. 2020. Reliable evaluation of adver-
sarial robustness with an ensemble of diverse parameter-free
attacks. In ICML.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2017. Imagenet: A large-scale hierarchical image
database.
Dong, Y.; Liao, F.; Pang, T.; Su, H.; Zhu, J.; Hu, X.; and Li,
J. 2018. Boosting adversarial attacks with momentum. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 9185–9193.

Feinman, R.; Curtin, R. R.; Shintre, S.; and Gardner, A. B.
2017. Detecting adversarial samples from artifacts. arXiv
preprint arXiv:1703.00410.
Gehr, T.; Mirman, M.; Drachsler-Cohen, D.; Tsankov, P.;
Chaudhuri, S.; and Vechev, M. 2018. AI2: Safety and Robust-
ness Certification of Neural Networks with Abstract Interpre-
tation. In 2018 IEEE Symposium on Security and Privacy
(SP), 3–18.
Goodfellow, I.; Shlens, J.; and Szegedy, C. 2015. Explain-
ing and Harnessing Adversarial Examples. In International
Conference on Learning Representations.
Jia, J.; Cao, X.; Wang, B.; and Gong, N. Z. 2020. Certified
Robustness for Top-k Predictions against Adversarial Per-
turbations via Randomized Smoothing. In 8th International
Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.
Kannan, H.; Kurakin, A.; and Goodfellow, I. 2018. Adver-
sarial logit pairing. arXiv preprint arXiv:1803.06373.
Katz, G.; Barrett, C.; Dill, D. L.; Julian, K.; and Kochen-
derfer, M. J. 2017. Reluplex: An efficient SMT solver for
verifying deep neural networks. In International Conference
on Computer Aided Verification, 97–117. Springer.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images.
Kurakin, A.; Goodfellow, I.; and Bengio, S. 2016. Ad-
versarial Examples in the Physical World. arXiv preprint
arXiv:1607.02533.
Kurakin, A.; Goodfellow, I. J.; and Bengio, S. 2017. Ad-
versarial Machine Learning at Scale. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.
Lecuyer, M.; Atlidakis, V.; Geambasu, R.; Hsu, D.; and Jana,
S. 2019. Certified robustness to adversarial examples with
differential privacy. In 2019 IEEE Symposium on Security
and Privacy (SP), 656–672. IEEE.
Ma, S.; Liu, Y.; Tao, G.; Lee, W.; and Zhang, X. 2019. NIC:
Detecting Adversarial Samples with Neural Network Invari-
ant Checking. In NDSS.
Moosavi-Dezfooli, S.-M.; Fawzi, A.; and Frossard, P. 2016.
Deepfool: a simple and accurate method to fool deep neu-
ral networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 2574–2582.
Mądry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and Vladu,
A. 2018. Towards Deep Learning Models Resistant to Adver-
sarial Attacks. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenRe-
view.net.
Pang, T.; Du, C.; Dong, Y.; and Zhu, J. 2018. Towards Robust
Detection of Adversarial Examples. In Bengio, S.; Wallach,
H.; Larochelle, H.; Grauman, K.; Cesa-Bianchi, N.; and Gar-
nett, R., eds., Advances in Neural Information Processing
Systems (NeurIPS), volume 31. Curran Associates, Inc.
Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik,
Z. B.; and Swami, A. 2016. The limitations of deep learning

in adversarial settings. In 2016 IEEE European symposium
on security and privacy (EuroS&P), 372–387. IEEE.
Rice, L.; Wong, E.; and Kolter, J. Z. 2020. Overfitting in
adversarially robust deep learning. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, 8093–8104. PMLR.
Rudin, W.; et al. 1976. Principles of mathematical analysis,
volume 3. McGraw-hill New York.
Shafahi, A.; Najibi, M.; Ghiasi, M. A.; Xu, Z.; Dickerson, J.;
Studer, C.; Davis, L. S.; Taylor, G.; and Goldstein, T. 2019.
Adversarial training for free! In Wallach, H.; Larochelle, H.;
Beygelzimer, A.; d'Alché-Buc, F.; Fox, E.; and Garnett, R.,
eds., Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.;
Goodfellow, I.; and Fergus, R. 2014. Intriguing properties of
neural networks. In International Conference on Learning
Representations.
Tramèr, F.; Kurakin, A.; Papernot, N.; Goodfellow, I.; Boneh,
D.; and McDaniel, P. 2017. Ensemble adversarial training:
Attacks and defenses. arXiv preprint arXiv:1705.07204.
Wang, Y.; Zou, D.; Yi, J.; Bailey, J.; Ma, X.; and Gu, Q. 2019.
Improving adversarial robustness requires revisiting misclas-
sified examples. In International Conference on Learning
Representations.
Wong, E.; and Kolter, Z. 2018. Provable defenses against
adversarial examples via the convex outer adversarial poly-
tope. In International Conference on Machine Learning,
5286–5295. PMLR.
Xie, C.; Tan, M.; Gong, B.; Yuille, A.; and Le, Q. V.
2020. Smooth Adversarial Training. arXiv preprint
arXiv:2006.14536.
Xie, C.; and Yuille, A. L. 2020. Intriguing Properties of
Adversarial Training at Scale. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.
Yin, X.; Kolouri, S.; and Rohde, G. K. 2019. Gat: Generative
adversarial training for adversarial example detection and ro-
bust classification. In International Conference on Learning
Representations (ICLR).
Zhang, H.; Chen, H.; Xiao, C.; Gowal, S.; Stanforth, R.; Li,
B.; Boning, D.; and Hsieh, C.-J. 2020a. Towards Stable and
Efficient Training of Verifiably Robust Neural Networks. In
International Conference on Learning Representations.
Zhang, H.; Yu, Y.; Jiao, J.; Xing, E. P.; Ghaoui, L. E.; and Jor-
dan, M. I. 2019. Theoretically Principled Trade-off between
Robustness and Accuracy. In Chaudhuri, K.; and Salakhut-
dinov, R., eds., Proceedings of the 36th International Con-
ference on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Proceedings of
Machine Learning Research, 7472–7482. PMLR.
Zhang, J.; Xu, X.; Han, B.; Niu, G.; Cui, L.; Sugiyama, M.;
and Kankanhalli, M. 2020b. Attacks which do not kill train-
ing make adversarial learning stronger. In International Con-
ference on Machine Learning, 11278–11287. PMLR.

Appendix
A. Proofs
Proof of Lemma 1
Lemma 1. Given the cross-entropy loss Lf (x, 0) = − log(1 − x), Lf (x, 1) = − log(x), and assuming Tσ = Sθ, we have
Eq.(4) ≤ Eq.(5), and this upper bound is tight when

f(·;σ) = ρAθ (·)
ρX (·) + ρAθ (·)

, and c =
1− α
α

.

Proof.

EAθ∼AθLf (f(Aθ;σ), 1) + EX∼XLf (f(X;σ), 0)

=

∫
x∈Rd

−ρAθ (x) log(f(x;σ))− ρX (x) log(1− f(x;σ))
(11)

We then leverage calculus of variation to minimize the function f . Let t(x) = f(x;σ), and define

l(x, t(x)) = −ρAθ (x)t(x)− ρX (x) log(1− t(x))

J(t) =

∫
x∈Rd

l(x, t(x)) .

By Euler-Lagrange equation, the extrema of functional J(t) is attained when ∂l
∂t = 0. Solving this derivative will get the condition

t∗(·) = f(·;σ) = ρAθ (·)
ρX (·) + ρAθ (·)

. (12)

Note that l(x, t(x)) is a convex function of t given fixed x, and therefore this t∗ is the minimum of J(t). Put Equation 12 back
into Equation 11, we get

eq.(11)

≥
∫
x∈Rd

−ρAθ (x) log
ρAθ (·)

ρX (·) + ρAθ (·)
− ρX (x) log

ρX (·)
ρX (·) + ρAθ (·)

=2DJS(Aθ,X) .

(13)

And we can connect α and c, where

Tσ = {x|f(x;σ) < α}

= {x| ρAθ (x)

ρX (x) + ρAθ (x)
< α}

= {x| ρX (x)
ρAθ (x)

>
1− α
α
}

= Sθ .

(14)

Proof of Theorem 1
Theorem 1. Eq. (5) is upper-bounded by two independent terms,

Eq.(5) ≤

Surrogate Game︷ ︸︸ ︷
min
σ

EAσLf (f(Aσ;σ), 1) + EXLf (f(X;σ), 0)+

Standard Adv Training︷ ︸︸ ︷
min
θ

E(Aθ,Y)Lg(g(Aθ; θ), Y) (6)

where adversarial sample Aσ (dependent on X) is drawn from distribution Aσ , as defined in the following.

A(X)
σ ∼ Aσ, Aσ|X ∼ U

[
argmax
x′∈B(X,ε)

Lf (f(x′;σ), 1)

]
(7)

Proof. Let
g∗(X) = argmax

x′∈B(X,ε)

Lg(g(x′; θ), 1) .

By extreme value theorem (Rudin et al. 1976), within the closed set B(x, ε), there exist maximum and minimum for the
continuous function g. Thus this function g∗ is bijective and well-defined. Note that g∗(X) produces a set instead of a single
value.

eq.(5) =min
θ,σ

(a)︷ ︸︸ ︷
µ(Tσ)E(Aθ,Y)∼(Aθ|Tσ,Y)L(g(Aθ; θ), y)

+

(b)︷ ︸︸ ︷
EAθ∼AθL(f(Aθ;σ), 1) + EX∼XL(f(X;σ), 0) .

Remember that µ is the measure of Aθ.

(a) = min
θ,σ

µ(Tσ)E(X,Y)∼(X ,Y)
Lg(g(g∗(X); θ), Y)1[U(g∗(X)) ∈ Tσ]

PrAθ∼Aθ (U(g∗(Aθ)) ∈ Tσ)
= min

θ,σ
E(x,y)∼(X ,Y)Lg(g(U(g∗(X)); θ), Y)1[U(g∗(X)) ∈ Tσ]

≤ min
θ,σ

E(X,Y)∼(X ,Y)Lg(g(U(g∗(X)); θ), Y)

= min
θ

E(Aθ,Y)∼(Aθ,Y)Lg(g(Aθ; θ), Y) . (By definition of Aθ)

(15)

Similarly, let

f∗(X) = argmax
x′∈B(X,ε)

Lf (f(x′;σ), 1) ,

and we have ∀x′′ ∈ B(x, ε),

Lf (f(U(f∗(x));σ), 1)
= max
x′∈B(X,ε)

Lf (f(x′;σ), 1)

≥Lf (f(x′′;σ), 1) .

(16)

Therefore

Lf (f(U(g∗(x));σ), 1)
=Lf (f(argmax

x′∈B(x,ε)

Lf (g(x′; θ), 1);σ), 1)

≤Lf (f(U(f∗(x));σ), 1) . (See Eq. 16)

(b) = min
θ,σ

EX∼XLf (f(U(g∗(X));σ), 1) + EX∼XLf (f(X;σ), 0)

≤ EX∼XLf (f(U(f∗(X));σ), 1) + EX∼XLf (f(X;σ), 0)

= EAσ∼AσLf (f(Aσ;σ), 1) + EX∼XLf (f(X;σ), 0) . (By definition of Aσ)

(17)

Combining Equation 15 and Equation 17 finishes the proof.

Proof of Theorem 2
Theorem 2. (1) When δ = 0, the δ-SG is equivalent to that in the Surrogate Game in Eq. (6) and when δ = 1, the δ-SG is
equivalent to the following.

G(1) = min
σ

EU∼U(B(X,ε))Lf (f(U ;σ), 1)

+EX∼XLf (f(X;σ), 0) .
(10)

2) We have δ1 ≥ δ2 =⇒ G(δ1) ≤ G(δ2) assuming B is defined on l∞-norm.

Proof. Let M0 ∈ Rd be an all-zero tensor, and M1 ∈ Rd be an all-one tensor. Recall that we have δ − SG game defined as

Let h(m,x1, x2) = m ◦ x1 + (1−m) ◦ x2, X ∼ X ,
N ∼ U(B(X, ε)), R ∼ U([0, 1]d),m(R) = 1[R < δ],

H
(X,N,R)
σ,δ ∼ Hσ,δ, Hσ,δ|(X,N,R) ∼

U

[
argmax

h(m(R),N,x′)|x′∈B(X,ε)

Lf (f(h(m(R), N, x′);σ), 1)

] (18)

When δ = 0, for some adversarial sample x ∈ B(X, ε), we have

m(R) = M0.

N ∼ U(B(X, ε)),

h(m(R), N, x) = x,

H
(X)
σ,δ ∼ Hσ,δ, Hσ,δ|X = U [argmax

x∈B(X,ε)

L((x;σ), 1)] .

This is nothing but the definition of the Hσ,δ in Surrogate Game.
Similarly, When δ = 1, we have

m(R) = M1.

N ∼ U(B(X, ε)),

h(m(R), N, x) = N,

H
(N)
σ,δ ∼ Hσ,δ = N .

This is the definition of Hσ,δ in game G(1).
Now, we prove the loss is monotonically decreasing with respect to δ. Let us consider the range of random variable

{h(m(R), N, x)|x ∈ B(X, ε)}, which is the function of δ, R, N and X . Let us denote it as C(δ,R,N,X). For simplicity, we
overload some operators including ◦ and + for set operation. For a vector x, and a set of vectors X , x ◦X = {x ◦ x′|x′ ∈ X}
and x+X = {x+ x′|x′ ∈ X}. Note that m(R) is parameterized on δ, and we will use mδ(R) for a clear notation when the
underlying δ is unclear in the context.

Before going into the details, let us prove an important lemma.

Lemma 2. Given δ1 ≥ δ2, others fixed and B defined on `∞-norm, we have

(1−mδ1(R)) ◦B(X −N, ε) ⊂ (1−mδ2(R)) ◦B(X −N, ε) .

Proof. Consider any x where

x ∈ (1−mδ1(R)) ◦B(X −N, ε) ,

and denote c = X −N . The inclusion of x implies there exists a y to compute x,

∃y ∈ B(c, ε), x = (1−mδ1(R)) ◦ y .

In the following, we will construct another y′ based on y, and will show that the same x is the result of Hadamard product
between (1−mδ2(R)) and y′ , and thus finish the proof.

We show all-zero tensor M0 and y are both in this set B(c, ε).

N ∈ B(X, ε)

=⇒ ||X −N ||∞ = ||c||∞ = ||c−M0||∞ ≤ ε
=⇒M0 ∈ B(c, ε) .

Let’s define operation F(y). Intuitively it fills some or all dimensions of y to 0, enumerates all such possible fillings and
collects them as a set. Let i represent a dimension index of y,

F(y) = {y′′|y′′i = yi ∨ y′′i = 0} .

For any element y′′ in the set F(y), each dimension i of this element y′′ takes value from either M0 or y. And note that y and
M0 are both in this set B(c, ε). Therefore y′′ also belongs to the set B(c, ε).

∀y′′ ∈ F(y), ||y′′ − c||∞
≤max(||y − c||∞, ||M0 − c||∞)

≤ε
=⇒ F(y) ⊂ B(c, ε) .

Given δ1 ≥ δ2 and X,R, and N fixed, by definition, mδ1(R) ≥ mδ2(R) element-wisely. Thus 1 −mδ1(R) ≤ 1 −mδ2(R)
element-wisely. Let’s consider the all the dimensions j ∈ J where the vector 1 −mδ1(R) and the vector 1 −mδ2(R) differ.
Since the two vectors are both binary, the only case of their difference will be

∀j ∈ J ,
(1−mδ1(R))j = 0 , and
(1−mδ2(R))j = 1 .

And we construct y′ based on y such that,

y′j =

{
0 j ∈ J
yj j /∈ J .

Note that y′ ∈ F ⊂ B(c, ε), and thus
x

=(1−mδ1(R)) ◦ y
=(1−mδ2(R)) ◦ y′

∈(1−mδ2(R)) ◦B(c, ε) .

Given the lemma 2, let us analyze the property of function h. We have
h(m,x1, x2) ◦m

=m ◦ x1 ◦m+ (1−m) ◦ x2 ◦m
=m ◦ x1 .

(19)

And similarly,
h(m,x1, x2) ◦ (1−m)

=(1−m) ◦ x2 .
(20)

Combine Eq. (19) and Eq. (20) through definition of C, and we have
C(δ,R,N,X)

=h(m(R), N,B(x, ε))

=h(m(R), N,B(x, ε)) ◦ (m(R) + (1−m(R)))

=m(R) ◦N + (1−m(R)) ◦B(X, ε) .

(21)

From Eq. (21), we have,

C(δ1, R,N,X)

=mδ1(R) ◦N + (1−mδ1(R)) ◦B(X, ε)

=mδ2(R) ◦N + (mδ1(R)−mδ2(R)) ◦N + (1−mδ1(R)) ◦B(X, ε)

=mδ2(R) ◦N + (mδ1(R)−mδ2(R)) ◦N + (1−mδ1(R)) ◦B(X, ε)

=mδ2(R) ◦N + (mδ1(R)−mδ2(R)) ◦N + (1−mδ1(R)) ◦N + (1−mδ1(R)) ◦B(X −N, ε)
=mδ2(R) ◦N + (1−mδ2(R)) ◦N + (1−mδ1(R)) ◦B(X −N, ε)
⊂mδ2(R) ◦N + (1−mδ2(R)) ◦N + (1−mδ2(R)) ◦B(X −N, ε) (Lemma 2)

=mδ2(R) ◦ u+ (1−mδ2(R)) ◦B(x, ε)

=C(δ2, R,N,X) .

Thus the domain C of the argmax function in Eq.(18) is monotonically decreasing, which implies this loss function is
monotonically decreasing.

B. Experiment Details
We adopt the ResNet-18 network structure in our discriminator. Specifically, the ResNet-18 model contains an input block and
three residual blocks, where each residual block has two residual layers. The numbers of channels for these blocks are [16, 32,
64, 128] with strides of [1, 1, 2, 2], respectively. During the training of the discriminator, we leave out the data augmentations
that are commonly employed in the training of classification tasks, such as random cropping and padding. This is because those
transformations applied on the training data will greatly shift the data distribution. For instance, the random cropping and padding
will introduce black margins on most of the training samples. These black margins however do not exist in real samples, and
hence create distribution disparity between the training set and the test set. Such a distribution disparity will hence make the
discriminator generalize poorly on the test set. As such, we use the same data processing procedure as for the test set during
training. We train the discriminator from scratch and use `2 model parameters regularization with the penalty weight of 1e-4. We
use Adam optimizer and set the learning rate as 1e-4 for the training. During the training described in Algorithm 1, we set the
total training epoch T = 140 and the curriculum learning epoch Tc = 25. We use an ensemble set E = [1e-2, 4] and sample the
learning rate log-uniformly from the set. We conduct the adversarial attack for I = 1000 steps in order to cover different attack
parameters in the ensemble set.

For the evaluation of model robustness, we use the common settings for Auto, PGD, MIFGSM, CW, BIM, DeepFool from the
original papers (Croce and Hein 2020; Mądry et al. 2018; Kurakin, Goodfellow, and Bengio 2016; Dong et al. 2018; Moosavi-
Dezfooli, Fawzi, and Frossard 2016). Specifically, we use standard setting introduced in Auto attack. For PGD, MIFGSM, CW
and BIM attack, we use step size 2 and iteration numbers 40. For PGD, we randomly initialize the perturbation for 10 times. We
increase the attack iterations for JSMA as it only manipulates one pixel a time, which requires more steps for larger input images
(e.g., 64× 64 for Tiny ImageNet). For the square attack, we run the attack for 1000 steps. For the adaptive attacks, we use the
grid search for the four strategies discussed in Section Adversarial attacks and report the worst accuracy. We also stress test the
adaptive attack for 1000 steps in Appendix D.

We implemented our framework in TensorFlow (Abadi et al. 2015). Experiments were conducted on a server equipped with
256 GB RAM, two Intel Xeon Silver 4214 2.20GHz 12-core CPUs and eight NVIDIA Quadro RTX 6000 GPUs. We used 4 RTX
6000 GPUs for distributed adversarial training. The training on CIFAR-10 took 1 day and 16 hours. Details of the training are
discussed in section C.

C. Performance of the Discriminator

(a) AUC scores of the Surrogate Game during Training (b) ROC curves of different attacks
Figure 4: AUC scores and ROC curves of different δ-SGs and attacks. (a) AUC scores of δ-SGs during the training process. We
calculate the AUC scores based on the output of our discriminator. (b) ROC curves of various attacks at the inference time.

In this section, we evaluate the performance of our discriminator against different δ-SGs and a few attacks described in
Section 13. We denote the adversarial samples from each attack and δ-SG as positive (label of 1), and the natural samples (in the
training set) as negative (label of 0). With this definition, we calculate the false positive rate and the true positive rate under
different thresholds and draw the Receiver Operating Characteristic (ROC) curve. The Area Under Curve (AUC) score quantifies
the area under the ROC curve. A larger AUC score indicates a better performance of the discriminator, where a random guess
has 0.5 AUC score. We conduct the experiments on CIFAR-10 with our discriminator trained against δ-SG with δ = 0.01. In
Figure (4a), we show the AUC scores of different δ-SGs on the training set and the test set. The blue shaded area illustrates the
curriculum learning stage where the hardship gradually increases. Observe that there is a “V” shape of the training curve within

this area. Initially, the blue line has a downward trend, meaning that the discriminator struggles to defend against the δ-SG. After
the tipping point, the discriminator starts to learn the pattern of the δ-SG samples and gradually has a better performance (a
larger AUC score). This delineates the importance of the curriculum learning, where the difficulty of δ-SG increases gradually.
Without the curriculum learning, the discriminator may get trapped in a hard game (with no performance improvement). Note
that the δ-SG with δ = 0.01 is much more difficult than that with δ = 1. Observe that in Figure (4a), the green curve (δ = 0.01)
is always lower than the orange curve (δ = 1). Similar to standard adversarial training, the AUC score on the training set (blue
curve) is larger than that on the test set (green curve). In Figure (4b), we present ROC curves for different attacks. As discussed
in Section , adversarial samples concentrate on the low-density area. A very small threshold in the discriminator hence can easily
filter out a large portion of adversarial samples. This is clearly demonstrated by the steep ROC curves, where our discriminator
has a high true positive rate and a very low false positive rate.

D. Grid Search on Hyper-Parameters for Adaptive Attacks

(a) Grid search of step sizes and different strategies (b) Stress test using f -priority strategy
Figure 5: Effect of step sizes and extensive attack steps

We study the effects of different hyper-parameters of adaptive attacks. We employ the Mądry model and the CIFAR-10 dataset
as the study subject. We use the grid search on the step size ranging from 1/8 to 4 for different adaptive attacks. We also conduct
the grid search on the penalty weight from 1e-1 to 100. The observations are similar and hence omitted. In Figure (5a), we report
the effect of different step sizes on adaptive attacks. Observe that the robust accuracy of our technique against different adaptive
attacks with various step sizes is stable (standard deviation of 2.2%). We then choose the f -priority strategy that has the best
attack result from the grid search, and use it to stress test our technique with extensive attack iterations. Figure (5b) shows that
with the increase of iterations, the attack quickly degrades the accuracy of the model in the first 50 iterations as shown by the
blue line. In the meantime, the adversarial samples generated by the attack also speedily fall into the low-density area as shown
by the green line of the LD Rate. As our discriminator discards low-density adversarial samples, we hence have a high HD Acc.
(orange line).

E. Results on Tiny Imagenet
In this section, we reports the result on Tiny ImageNet in Table 3. This result illustrates the scalability of our method on higher-
resolution data. We choose two popular adversarial training methods including Mądry (Mądry et al. 2018) and ALP (Kannan,
Kurakin, and Goodfellow 2018). We report the accuracy, HD Acc. and LD Rate for different attacks (see Section Experimental
Setup for the definition of these metrics). We can find the accuracy of classifier is much lower than CIFAR10. The results shows
that our method can bring accuracy gap down from 28.2% to 4.5%. The findings are also consistent with the result on CIFAR10.

F. Results on Naturally Trained Models
Our technique requires the classifier to be adversarially trained according to our derivation of Theorem 1. It is interesting to
study the performance of the discriminator on naturally trained models. The results on CIFAR-10 are shown in Table 4. We
again report the accuracy, HD Acc. and LD Rate for different attacks (see Section Experimental Setup for the definition of these
metrics). Observe that the HD Acc. on naturally trained models is much lower than that on adversarially trained ones under
black-box and adaptive attacks. This result reflects our explanation in Figure 1a. That is, natural models have a irregular decision
boundary, which will misclassify samples in the high-density area. Since these samples are still in-distribution samples, the

Table 3: Compare accuracy with high density accuracy on Tiny
Imagenet. Some attacks are dropped due to timeout when scal-
ing to this larger data set.

Threat Attack
Mądry ALP

Acc. HD Acc. LD Rate Acc. HD Acc. LD Rate

None Nature 45.4 % 44.7 % 1.1 % 42.2 % 41.7 % 1.1 %

Oblivious

PGD 18.7 % 44.0 % 97.3 % 19.4 % 41.1 % 97.7 %
CW 17.2 % 44.5 % 98.8 % 16.5 % 41.5 % 98.9 %
BIM 18.7 % 43.5 % 97.5 % 19.3 % 40.7 % 97.6 %

MIFGSM 20.5 % 41.8 % 97.4 % 20.3 % 39.0 % 97.4 %

Unseen Square 34.2 % 41.1 % 55.7 % 31.8 % 37.8 % 53.9 %

Adpative

g prior 40.2 % 40.3 % 42.2 % 36.9 % 37.4 % 39.5 %
f prior 17.7 % 40.3 % 40.3 % 16.9 % 37.4 % 37.3 %
Margin 40.9 % 40.9 % 43.3 % 37.7 % 37.8 % 40.2 %
Penalty 25.8 % 40.2 % 42.0 % 25.2 % 37.4 % 39.3 %

Worst Case 17.2 % 40.2 % - 16.5 % 37.4 % -
Acc. Gap 28.2% 4.5 % - 25.7 % 4.3 % -

Table 4: Compare accuracy of naturally trained classifier on CIFAR-10

Threat Attack
Nature Classifier

Acc. HD Acc. LD Rate

None Nature 95.0 % 93.4 % 1.7 %

Oblivious

PGD 0.0 % 93.1 % 99.9 %
CW 0.0 % 93.5 % 100.0 %
BIM 0.0 % 89.7 % 100.0 %

MIFGSM 0.0 % 54.2 % 99.0 %
DeepFool 3.3 % 84.1 % 88.5 %

JSMA 22.4 % 93.0 % 99.1 %

Unseen Square 1.4 % 64.9 % 66.4 %

Adpative

g prior 44.5 % 48.7 % 50.9 %
f prior 0.0 % 48.6 % 50.8 %
Margin 48.6 % 50.3 % 52.9 %
Penalty 0.0 % 42.9 % 45.5 %

Worst Case 0.0 % 42.9 % -
Acc. Gap 95.0 % 52.1 % -

discriminator will not reject them, which results in a low HD Acc. Comparing to the standalone naturally trained classifier, our
method greatly improves the robustness from 0% to 42.9% HD Acc in the worst case. And thus bring down the accuracy gap
from 95.0 % to 52.1%.

	Introduction
	Related Work
	Design
	Adversarial Training with a Discriminator
	Inference with Discriminator

	Experiment
	Experimental Setup
	Adversarial attacks
	Comparison with Adversarial Training Baselines
	Comparison with Discriminators
	Effect on Normal Models
	How the Discriminator Works

	Conclusion
	Appendix
	A. Proofs
	Proof of Lemma 1
	B. Experiment Details
	C. Performance of the Discriminator
	D. Grid Search on Hyper-Parameters for Adaptive Attacks
	E. Results on Tiny Imagenet
	F. Results on Naturally Trained Models

